2019 BC \#6
(no calculator)
(a)

The graph shown is the graph of f and a tangent line.
$f(0)=3$ from the graph.
$f^{\prime}(0)=-\frac{3}{3 / 2}=-2$ from the tangent line
$f^{\prime \prime}(0)=3$ from the chart
$f^{(3)}(0)=-\frac{23}{2}$ from the chart
$T_{3}(x)=3-2 x+\frac{3}{2!} x^{2}-\frac{23 / 2}{3!} x^{3}$
(b)

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\cdots
$$

$e^{x} f(x) \approx\left(1+x+\frac{x^{2}}{2!}+\cdots\right)\left(3-2 x+\frac{3}{2!} x^{2}-\frac{23 / 2}{3!} x^{3}+\cdots\right)$

$$
\approx\left(3-2 x+\frac{3}{2!} x^{2}+\cdots\right)+\left(3 x-2 x^{2}+\cdots\right)+\left(\frac{3 x^{2}}{2!}-\cdots\right)+\cdots
$$

$$
\approx 3+x+\left(\frac{3}{2!}-2+\frac{3}{2!}\right) x^{2}
$$

(c)

$$
\begin{aligned}
h(1)=\int_{0}^{1} f(t) d t & \approx \int_{0}^{1}\left(3-2 x+\frac{3}{2!} x^{2}-\frac{23 / 2}{3!} x^{3}\right) d x \\
& =\left[3 x-x^{2}+\frac{1}{2} x^{3}-\frac{23}{48} x^{4}\right]_{0}^{1} \\
& =3-1+\frac{1}{2}-\frac{23}{48} \frac{97}{48}
\end{aligned}
$$

(d)

The alternating series error bound is the first unused term of $h(x)$ found in part (c).
The first unused term of $f(x)$ from part (a) is $\frac{54}{4!} x^{4}$ so the
first unused term of the approximation in part (c) $h(x)$ is

$$
\begin{aligned}
\int_{0}^{1} \frac{54}{4!} x^{4} d x & \left.=\frac{54}{4!\cdot 5} x^{5}\right]_{0}^{1} \\
& =\frac{54}{120} \\
& =\frac{9}{20} \\
& =0.45
\end{aligned}
$$

This is the alternating series error bound so the approximation found in part (c) differs from $h(1)$ by at most 0.45 .

