2019 BC #2 (calculator-active)

(a)

$$r(\theta) = 3\sqrt{\theta} \sin(\theta^{2}) \text{ for } 0 \le \theta \le \sqrt{\pi}$$
Area $= \frac{1}{2} \int_{0}^{\sqrt{\pi}} (r(\theta))^{2} d\theta \approx \boxed{3.534291735}$
(b)
The distance from the origin to a point on the curve is r.

$$r_{avg} = \frac{1}{\sqrt{\pi} - 0} \int_{0}^{\sqrt{\pi}} r(\theta) d\theta \approx \boxed{1.57993277}$$
(c)
Since the slope of the line is m, then $m = \tan \theta$. So $\theta = \tan^{-1} m$ is where the line intersects $r(\theta)$.
So, the area from 0 to $\tan^{-1} m$ is equal to the area from $\tan^{-1} m \text{ to } \sqrt{\pi}$:
 $\boxed{\frac{1}{2} \int_{0}^{\sqrt{\pi}^{1-m}} (r(\theta))^{2} d\theta = \frac{1}{2} \int_{\sqrt{m}^{-1} m}^{\sqrt{\pi}} (r(\theta))^{2} d\theta}$
(d)
As $k \to \infty$, $r = k \cos \theta$ is a circle that gets bigger and $\theta \to \frac{\pi}{2}$.
So, $\lim_{k \to \infty} A(k) = \frac{1}{2} \int_{0}^{\pi/2} (r(\theta))^{2} d\theta \approx \boxed{3.324470722}$