2019 BC \#2
(calculator-active)
(a)
$r(\theta)=3 \sqrt{\theta} \sin \left(\theta^{2}\right)$ for $0 \leq \theta \leq \sqrt{\pi}$
Area $=\frac{1}{2} \int_{0}^{\sqrt{\pi}}(r(\theta))^{2} d \theta \approx 3.534291735$
(b)

The distance from the origin to a point on the curve is r.
$r_{\text {avg }}=\frac{1}{\sqrt{\pi}-0} \int_{0}^{\sqrt{\pi}} r(\theta) d \theta \approx 1.57993277$
(c)

Since the slope of the line is m, then $m=\tan \theta$. So $\theta=\tan ^{-1} m$ is where the line intersects $r(\theta)$.
So, the area from 0 to $\tan ^{-1} m$ is equal to the area from $\tan ^{-1} m$ to $\sqrt{\pi}$:
$\frac{1}{2} \int_{0}^{\tan ^{-1} m}(r(\theta))^{2} d \theta=\frac{1}{2} \int_{\tan ^{-1} m}^{\sqrt{\pi}}(r(\theta))^{2} d \theta$
(d)

As $k \rightarrow \infty, r=k \cos \theta$ is a circle that gets bigger and $\theta \rightarrow \frac{\pi}{2}$.
So, $\lim _{k \rightarrow \infty} A(k)=\frac{1}{2} \int_{0}^{\pi / 2}(r(\theta))^{2} d \theta \approx 3.324470722$

