2019 AB/BC \#1 (calculator-active)

(a)

Since $E(t)$ is the rate at which fish enter the lake, then the number of fish that enter the lake from $0 \leq t \leq 5$ is $\int_{0}^{5} E(t) d t \approx 153.4576901 \quad 153$ fish
(b)

Since $L(t)$ is the rate that fish leave the lake, then the average number of fish

$$
\text { that leave the lake from } 0 \leq t \leq 5 \text { is } \frac{1}{5} \int_{0}^{5} L(t) d t \approx 6.059037771 \frac{\text { fish }}{\text { hour }} 6.059 \frac{\text { fish }}{\text { hour }}
$$

(c)

Let the number of fish in the lake at any time $t \geq 0$ be $F(t)=F(0)+\int_{0}^{t}(E(t)-L(t)) d t$.
The greatest number of fish in the lake when $0 \leq t \leq 8$ will occur when $F^{\prime}(t)=0$ on that interval or at $F(0)$ or at $F(8)$. But, we were not given $F(0)$, the number of fish in the lake when $t=0$.
$F^{\prime}(t)=E(t)-F(t)=0$ only when $t \approx 6.203564=a$ for $0 \leq t \leq 8$.
Since $E(t)>L(t)$ for $0 \leq t<a$ then $F^{\prime}(t)>0$ for $0 \leq t<a$ and
since $E(t)<L(t)$ for $a<t \leq 8$ then $F^{\prime}(t)<0$ for $a<t \leq 8$.
So $F(a)$ is a relative maximum but since it is the only critical point on the interval, it is absolute maximum as well. Hence the greatest number of fish in the lake for $0 \leq t \leq 8$ occurs when $t=a$ hours.
(d)
$F(t)$ is the number of fish in the lake at any time, t.
$F^{\prime}(t)=E(t)-L(t)$ is the rate of change in the number of fish in the lake at any time, t.
$F^{\prime \prime}(t)=E^{\prime}(t)-L^{\prime}(t)$
$F^{\prime \prime}(5)=E^{\prime}(5)-L^{\prime}(5) \approx-6.802-3.921<0$
Hence the rate of change in the number of fish in the lake
is decreasing at $t=5$.

