2019 AB/BC #1 (calculator-active)

(a) Since $E(t)$ is the rate at which fish enter the lake, then the number of fish
that enter the lake from $0 \le t \le 5$ is $\int_0^5 E(t) dt \approx 153.4576901$ 153 <i>fish</i>
(b) Since $L(t)$ is the rate that fish leave the lake, then the average number of fish
that leave the lake from $0 \le t \le 5$ is $\frac{1}{5} \int_0^5 L(t) dt \approx \boxed{6.059037771 \frac{fish}{hour}} 6.059 \frac{fish}{hour}$
(c)
Let the number of fish in the lake at any time $t \ge 0$ be $F(t) = F(0) + \int_0^t (E(t) - L(t)) dt$.
The greatest number of fish in the lake when $0 \le t \le 8$ will occur when $F'(t) = 0$ on that
interval or at $F(0)$ or at $F(8)$. But, we were not given $F(0)$, the number of fish in the lake
when $t = 0$.
$F'(t) = E(t) - F(t) = 0$ only when $t \approx 6.203564 = a$ for $0 \le t \le 8$.
Since $E(t) > L(t)$ for $0 \le t < a$ then $F'(t) > 0$ for $0 \le t < a$ and
since $E(t) < L(t)$ for $a < t \le 8$ then $F'(t) < 0$ for $a < t \le 8$.
So $F(a)$ is a relative maximum but since it is the only critical point
on the interval, it is absolute maximum as well. Hence the greatest
number of fish in the lake for $0 \le t \le 8$ occurs when $t = a hours$.
(d)
F(t) is the number of fish in the lake at any time, t.
F'(t) = E(t) - L(t) is the rate of change in the number of fish in the lake at any time, t.
F''(t) = E'(t) - L'(t)
$F''(5) = E'(5) - L'(5) \approx -6.802 - 3.921 < 0$
Hence the rate of change in the number of fish in the lake

is decreasing at t = 5.