2019 AB \#6
(no calculator)
(a)
$y=4+\frac{2}{3}(x-2)=4+\frac{2}{3} x-\frac{4}{3}=\frac{2}{3} x+\frac{8}{3}$
$y^{\prime}(x)=\frac{2}{3}$. So $h^{\prime}(2)=\frac{2}{3}$ This is the slope of the line tangent to h at $x=2$.
(b)

$$
a(x)=3 x^{3} h(x)
$$

$$
a^{\prime}(x)=3 x^{3} h^{\prime}(x)+9 x^{2} h(x)
$$

$$
a^{\prime}(2)=3\left(2^{3}\right) h^{\prime}(2)+9\left(2^{2}\right) h(2)=3\left(2^{3}\right)\left(\frac{2}{3}\right)+9\left(2^{2}\right)(4) \quad 160
$$

(c)
$h(x)=\frac{x^{2}-4}{1-(f(x))^{3}}$ and f, f^{\prime}, and h are continuous since they are differentiable,
so $\lim _{x \rightarrow 2} h(x)=h(2)$ and $\lim _{x \rightarrow 2} f(x)=f(2)$ and $\lim _{x \rightarrow 2} f^{\prime}(x)=f^{\prime}(2)$.
Since L'Hospital's Rule applies, then

$$
\lim _{x \rightarrow 2}\left(1-(f(x))^{3}\right)=0 \Rightarrow 1-(f(2))^{3}=0 \Rightarrow(f(2))^{3}=1 \Rightarrow f(2)=1
$$

also, since L'Hospital's rule applies,
$h(2)=\lim _{x \rightarrow 2}\left(\frac{x^{2}-4}{1-(f(x))^{3}}\right)=\lim _{x \rightarrow 2}\left(\frac{2 x}{-3(f(x))^{2} f^{\prime}(x)}\right)=\frac{4}{-3(f(2))^{2} f^{\prime}(2)}=\frac{4}{-3(1)^{2} f^{\prime}(2)}=4$
So, $f^{\prime}(2)=-\frac{1}{3}$
(d)

We know that both g and h are differentiable so they are both continuous.
So $\lim _{x \rightarrow 2} g(x)=g(2)=4$ and $\lim _{x \rightarrow 2} h(x)=h(2)=4$.
Since $g(x) \leq k(x) \leq h(x)$ for $1<x<3$, then
$g(2) \leq k(2) \leq h(2) \Rightarrow 4 \leq k(2) \leq 4$. So $k(2)=4$
also
$\lim _{x \rightarrow 2} g(x) \leq \lim _{x \rightarrow 2} k(x) \leq \lim _{x \rightarrow 2} h(x) \Rightarrow 4 \leq \lim _{x \rightarrow 2} k(x) \leq 4$. So by the Squeeze Theorem $\lim _{x \rightarrow 2} k(x)=4$.
Since $k(2)=\lim _{x \rightarrow 2} k(x)$, then k is continuous at $x=2$.

