2019 AB #6 (no calculator)

(a)

$$y = 4 + \frac{2}{3}(x-2) = 4 + \frac{2}{3}x - \frac{4}{3} = \frac{2}{3}x + \frac{8}{3}$$

 $y'(x) = \frac{2}{3}$. So $h'(2) = \left[\frac{2}{3}\right]$ This is the slope of the line tangent to h at $x = 2$.
(b)
 $a(x) = 3x^{3}h(x)$
 $a'(x) = 3x^{3}h'(x) + 9x^{2}h(x)$
 $a'(2) = 3(2^{3})h'(2) + 9(2^{2})h(2) = \boxed{3(2^{3})\left(\frac{2}{3}\right) + 9(2^{2})(4)}$ 160
(c)
 $h(x) = \frac{x^{2} - 4}{1 - (f(x))^{3}}$ and f, f' , and h are continuous since they are differentiable,
so $\lim_{x \to 2} h(x) = h(2)$ and $\lim_{x \to 2} f(x) = f(2)$ and $\lim_{x \to 2} f'(x) = f'(2)$.
Since L'Hospital's Rule applies, then
 $\lim_{x \to 2} \left(1 - (f(x))^{3}\right) = 0 \Rightarrow 1 - (f(2))^{3} = 0 \Rightarrow (f(2))^{3} = 1 \Rightarrow \boxed{f(2) = 1}$
also, since L'Hospital's rule applies,
 $h(2) = \lim_{x \to 2} \left(\frac{x^{2} - 4}{1 - (f(x))^{3}}\right) = \lim_{x \to 2} \left(\frac{2x}{-3(f(x))^{2}f'(x)}\right) = \frac{4}{-3(f(2))^{2}f'(2)} = \frac{4}{-3(1)^{2}f'(2)} = 4$
So, $\boxed{f'(2) = -\frac{1}{3}}$
(d)
We know that both g and h are differentiable so they are both continuous.
So $\lim_{x \to 2} g(x) = g(2) = 4$ and $\lim_{x \to 2} h(x) = h(2) = 4$.
Since $g(x) \le k(x) \le h(x)$ for $1 < x < 3$, then
 $g(2) \le k(2) \le h(2) \Rightarrow 4 \le k(2) \le 4$. So $k(2) = 4$
also
 $\lim_{x \to 2} g(x) \le \lim_{x \to 2} h(x) \Rightarrow \lim_{x \to 2} h(x) \Rightarrow 4 \le \lim_{x \to 2} k(x) \le 4$. So by the Squeeze Theorem $\lim_{x \to 2} k(x) = 4$.
Since $k(2) = \lim_{x \to 2} k(x)$, then k is continuous at $x = 2$.