2017 BC \#6

(no calculator)
(a)

$$
\begin{aligned}
f(0) & =0 \\
f^{\prime}(0) & =1
\end{aligned}
$$

$n=1: f^{(2)}(0)=-1 f^{\prime}(0)=-1(1)=-1$
$n=2: f^{(3)}(0)=-2 f^{(2)}(0)=-2(-1)=2$
$n=3: f^{(4)}(0)=-3 f^{(3)}(0)=-3(2)=-6$
$f(x)=f(0)+f^{\prime}(0) x+\frac{f^{(2)}(0) x^{2}}{2!}+\frac{f^{(3)}(0) x^{3}}{3!}+\frac{f^{(4)}(0) x^{4}}{4!}+\cdots$
$=0+1 x+\frac{-1 x^{2}}{2}+\frac{2 x^{3}}{6}+\frac{-6 x^{4}}{24}+\cdots$
$=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n+1} x^{n}}{n}+\cdots$ for $n \geq 1$
(b)
$f(1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges because is an alternating series whose terms
decrease in absolute value to 0 or because it is the alternating harmonic series.
$\sum_{n=1}^{\infty}\left|\frac{(-1)^{n+1}}{n}\right|=\sum_{n=1}^{\infty} \frac{1}{n}$ diverges because it is a p-series where $p \leq 1$ or because it is the harmonic series.
\therefore the series in part (a) converges conditionally at $x=1$.
(c)

$$
\begin{aligned}
g(x)=\int_{0}^{x} f(t) d t & =\int_{0}^{x}\left(t-\frac{t^{2}}{2}+\frac{t^{3}}{3}-\frac{t^{4}}{4}+\cdots\right) d t \\
& =\frac{t^{2}}{1 \cdot 2}-\frac{t^{3}}{2 \cdot 3}+\frac{t^{4}}{3 \cdot 4}-\frac{t^{5}}{4 \cdot 5}+\left.\cdots\right|_{0} ^{x} \\
& =\frac{x^{2}}{1 \cdot 2}-\frac{x^{3}}{2 \cdot 3}+\frac{x^{4}}{3 \cdot 4}-\frac{x^{5}}{4 \cdot 5}+\cdots+\frac{(-1)^{n+1} x^{n+1}}{n(n+1)}+\cdots \quad \text { for } n \geq 1
\end{aligned}
$$

Note: General term could also be $\frac{(-1)^{n} x^{n}}{(n-1) n}$ for $n \geq 2$
(d)

Since we are using $P_{4}\left(\frac{1}{2}\right)$ as an approximation, the alternating series error bound will
be the absolute value of the next unused term (which would be the 5 th-degree term in this case).
So $\left|P_{4}\left(\frac{1}{2}\right)-g\left(\frac{1}{2}\right)\right| \leq\left|\frac{-\left(\frac{1}{2}\right)^{5}}{4 \cdot 5}\right|=\frac{\frac{1}{32}}{20}=\frac{1}{640}<\frac{1}{500}$

