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(a) 

   

               f (0) = 0
              f '(0) = 1

n = 1:   f (2) (0) = −1 f '(0) = −1(1) = −1

n = 2 :  f (3) (0) = −2 f (2) (0) = −2(−1) = 2

n = 3:  f (4) (0) = −3 f (3) (0) = −3(2) = −6

f (x) = f (0)+ f '(0)x + f (2) (0)x2
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(b) 
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∑  converges because is an alternating series whose terms

decrease in absolute value to 0 or because it is the alternating harmonic series.
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∑  diverges because it is a p-series where p ≤1 or because it is the harmonic series.

∴ the series in part (a) converges conditionally at x = 1.

  

 
(c) 

   

g(x) = f (t)dt = t − t2
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                        Note: General term could also be 
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(d) 

 

   

Since we are using P4
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 as an approximation, the alternating series error bound will

be the absolute value of the next unused term (which would be the 5th-degree term in this case).

So P4
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