2017 BC \#2
(calculator)

(a)
Area of $R=\frac{1}{2} \int_{0}^{\pi / 2}(f(\theta))^{2} d \theta \approx .6484143709$ or .648
(b)
$\frac{1}{2} \int_{0}^{k}\left[(g(\theta))^{2}-(f(\theta))^{2}\right] d \theta=\frac{1}{2} \int_{k}^{\pi / 2}\left[(g(\theta))^{2}-(f(\theta))^{2}\right] d \theta$
(c) $w(\theta)=g(\theta)-f(\theta)$ $w_{A}=\frac{1}{\frac{\pi}{2}-0} \int_{0}^{\pi / 2}(g(\theta)-f(\theta)) d \theta \approx .4854461355$ or .485

Note: Store .4854461355 as a and use it in part (d).
(d)

We must solve for θ in $\left[0, \frac{\pi}{2}\right]: w(\theta)=w_{A}$
$g(\theta)-f(\theta)=a \quad$ Note: a is from part (c).
$g(\theta)-f(\theta)-a=0 \quad$ Note: Solve by graphing in the function mode and find the zero in $\left[0, \frac{\pi}{2}\right]$.
$\theta=.51768795$ or .518 or .517 Note: Store .51768795 as b and use it in the next part of the problem.
$w^{\prime}(b)=-.5818591$ Note: Find derivative either in function mode or polar mode.
$w(\theta)$ is decreasing at $\theta=b$ since $w^{\prime}(b)<0$.

