2017 AB/BC \#3

(no calculator)
f is differentiable so f is continuous on $[-6,5]$ and $f(-2)=7$.
(a)
$\int_{-2}^{x} f^{\prime}(t) d t=f(x)-f(-2)$ by the FTC
$f(-6)=f(-2)+\int_{-2}^{-6} f^{\prime}(t) d t=7-\int_{-6}^{-2} f^{\prime}(t) d t=7-\frac{1}{2}(4)(2)$ or 3
$f(5)=f(-2)+\int_{-2}^{5} f^{\prime}(t) d t=7-\frac{1}{2}(\pi)(2)^{2}+\frac{1}{2}(3)(2)$ or $10-2 \pi$
(b)

Since $f^{\prime}(x)>0$ when $-6 \leq x<-2$ and $2<x<5$,
f is increasing when $-6 \leq x \leq-2$ and $2 \leq x \leq 5$.
Note: The inclusion of the endpoints (and not) are usually accepted.
(c)

The absolute minimum value of f on $[-6,5]$ will occur at the endpoints of the interval or at critical points of f on the interval.
The values at the endpoints were found in part (a):
$f(-6)=3$
$f(5)=10-2 \pi$
Critical points occur when $f^{\prime}(x)=0$, at $x=-2,2,5$:
$f(-2)=7$ (this was given)
$f(2)=f(-2)+\int_{-2}^{2} f^{\prime}(t) d t=7-2 \pi$
The smallest value of these is the absolute minimum value on the interval and it is $7-2 \pi$.
(d)
$f^{\prime \prime}(-5)=\frac{f^{\prime}(-2)-f^{\prime}(-6)}{-2-(-6)}=\frac{0-2}{4}$ or $-\frac{1}{2}$
$f^{\prime \prime}(3)$ does not exist because the slope of $f^{\prime}(x)$ at $x=3$ does not exist
since $\lim _{x \rightarrow 3^{-}} f^{\prime \prime}(x)=2 \neq-1=\lim _{x \rightarrow 3^{+}} f^{\prime \prime}(x)$.

