2017 AB \#6
 (no calculator)

g is given as a differentiable function so g is a continuous function.
(a)

$$
\begin{aligned}
& f^{\prime}(x)=-2 \sin (2 x)+(\cos x) e^{\sin x} \\
& \left.m\right|_{x=\pi}=f^{\prime}(\pi)=-2 \sin (2 \pi)+(\cos \pi) e^{\sin \pi}=0-1\left(e^{0}\right) \text { or }-1
\end{aligned}
$$

(b)

Using the chain rule:

$$
\begin{aligned}
k^{\prime}(x) & =h^{\prime}(f(x)) f^{\prime}(x) & & \\
k^{\prime}(\pi) & =h^{\prime}(f(\pi)) f^{\prime}(\pi) & & f(\pi)=\cos (2 \pi)+e^{\sin \pi}=1+e^{0}=2 \\
& =h^{\prime}(2)(-1) & & h^{\prime}(2)=\frac{h(3)-h(0)}{3-0}=\frac{-1-0}{3}=-\frac{1}{3} \\
& =-\frac{1}{3}(-1) \text { or } \frac{1}{3} & &
\end{aligned}
$$

(c)

Using the product rule:

$$
\begin{aligned}
m^{\prime}(x) & =g(-2 x) h^{\prime}(x)+h(x)\left(-2 g^{\prime}(-2 x)\right) \\
m^{\prime}(2) & =g(-4) h^{\prime}(2)-2 h(2) g^{\prime}(-4) \quad \text { Since } \frac{h(2)-h(0)}{2-0}=-\frac{1}{3}, \text { then } h(2)=-\frac{2}{3} . \\
& =5\left(-\frac{1}{3}\right)-2\left(-\frac{2}{3}\right)(-1) \text { or }-3
\end{aligned}
$$

(d)

Yes

Since g is differentiable for all x, then it is continuous for all x. Hence it is certainly continuous on $[-5,-3]$ and differentiable on $(-5,-3)$ thus satisfying the conditions of the Mean Value Theorem.
Therefore there exists a c in $(-5,-3)$ such that $g^{\prime}(c)=\frac{g(-3)-g(-5)}{-3-(-5)}=\frac{2-10}{2}=-4$
Since there exists a c in $(-5,-3)$, then clearly there exists a c in $[-5,-3]$.

