2017 AB #5 (no calculator)

(a) $v_p(t) = x'_p(t) = \frac{2t-2}{t^2 - 2t + 10} = 0$ $v_p(t) = 0 \implies t = 1$ and $v_p(t) < 0$ on [0,1) and $v_p(t) > 0$ on (1,8]. On [0,8], the particle moves to the left when $v_p(t) < 0$ and this occurs on [0,1). (b) $v_0(t) = (t-5)(t-3) = 0$ when t = 3, and t = 5. $v_o(t) > 0$ on [0,3) and (5,8] and $v_o(t) < on (3,5)$ This tells us that particle Q moves to the right on [0,3) and (5,8] and left on (3,5). So the particles move the same direction on (1,3) and (5,8]since $v_p(t)$ and $v_o(t)$ have the same signs on these intervals. (c) $a_o(t) = v'_o(t) = 2t - 8 \implies a_o(2) = 2(2) - 8 \text{ or } -4$ At t = 2 the speed of particle Q is **decreasing** because $a_0(2)$ and $v_0(2)$ have different signs. Note: $a_0(2) < 0$ and from part (b), $v_0(2) > 0$ which means that particle Q is moving to the right at a decreasing rate. Hence at t = 2 the particle is slowing down or the speed of the particle is decreasing . (d)The position of particle Q first changes direction when t = 3, so $x_{Q}(3) = x_{Q}(0) + \int_{0}^{3} v_{Q}(t) dt$ $= 5 + \left[\frac{1}{3}t^3 - 4t^2 + 15t\right]_0^3$ =5+(9-36+45) or 23