2017 AB \#5
(no calculator)
(a)
$v_{P}(t)=x_{P}^{\prime}(t)=\frac{2 t-2}{t^{2}-2 t+10}=0$
$v_{P}(t)=0 \Rightarrow t=1$ and $v_{P}(t)<0$ on $[0,1)$ and $v_{P}(t)>0$ on $(1,8]$.
On $[0,8]$, the particle moves to the left when $v_{P}(t)<0$ and this occurs on $[0,1)$.
(b)
$v_{Q}(t)=(t-5)(t-3)=0$ when $t=3$, and $t=5$.
$v_{Q}(t)>0$ on $[0,3)$ and $(5,8]$ and $v_{Q}(t)<$ on $(3,5)$
This tells us that particle Q moves to the right on $[0,3)$ and $(5,8]$ and left on $(3,5)$.
So the particles move the same direction on $(1,3)$ and $(5,8]$
since $v_{P}(t)$ and $v_{Q}(t)$ have the same signs on these intervals.
(c)
$a_{Q}(t)=v_{Q}^{\prime}(t)=2 t-8 \quad \Rightarrow \quad a_{Q}(2)=2(2)-8$ or -4
At $t=2$ the speed of particle Q is decreasing because $a_{Q}(2)$ and $v_{Q}(2)$ have different signs.
Note: $a_{Q}(2)<0$ and from part $(\mathrm{b}), v_{Q}(2)>0$ which means that particle Q is moving to the right at a decreasing rate. Hence at $t=2$ the particle is slowing down or the speed of the particle is decreasing .
(d)

The position of particle Q first changes direction when $t=3$, so

$$
\begin{aligned}
x_{Q}(3) & =x_{Q}(0)+\int_{0}^{3} v_{Q}(t) d t \\
& =5+\left[\frac{1}{3} t^{3}-4 t^{2}+15 t\right]_{0}^{3} \\
& =5+(9-36+45) \text { or } 23
\end{aligned}
$$

