2017 AB \#2 (calculator)

There are 50 pounds of bananas on display when the store opens $(t=0)$.
Customers remove bananas from the display at a rate of $f(t) \frac{\text { pounds }}{\mathrm{hr}}$ for $0<t \leq 12$.
Employees add bananas to the display at a rate of $g(t) \frac{\text { pounds }}{\mathrm{hr}}$ for $3<t \leq 12$.

(a)
$\int_{0}^{2} f(t) d t \approx 20.05117518$ pounds or 20.051 pounds are removed during the first 2 hours.
(b)
$f^{\prime}(7) \approx-8.119539823$ or -8.120 or -8.119
Seven hours after the store opens, the rate that the customers remove bananas from the
table is decreasing by $8.120 \frac{\text { pounds }}{\mathrm{hr}^{2}}$.
(c)
$f(5) \approx 13.796 \frac{\text { pounds }}{\mathrm{hr}}$ removed
The number of pounds on the table at $t=5$ is decreasing since $f(5)>g(5)$.
or consider:
Amount of bananas at any time, $A(t)=50-\int_{0}^{t} f(x) d x+\int_{3}^{t} g(x) d x$
$A^{\prime}(t)=-f(t)+g(t)$
$A^{\prime}(5)=-f(5)+g(5) \approx-13.796+11.532<0$
Hence the amount of bananas on the table is decreasing at $t=5$.
(d) added
Pounds of bananas on table at $t=8$ is the pounds at opening - pounds removed + pounds added
$50-\int_{0}^{8} f(t) d t+\int_{3}^{8} g(t) d t \approx 23.34739574$ pounds or 23.347 pounds

