2017 AB #2 (calculator)

There are 50 pounds of bananas on display when the store opens $(t = 0)$.
Customers remove bananas from the display at a rate of $f(t) \frac{\text{pounds}}{\text{hr}}$ for $0 < t \le 12$.
Employees add bananas to the display at a rate of $g(t) \frac{\text{pounds}}{\text{hr}}$ for $3 < t \le 12$.
(a)
$\int_{0}^{2} f(t) dt \approx 20.05117518$ pounds or 20.051 pounds are removed during the first 2 hours.
(b) $f'(7) \approx -8.119539823 \text{ or } -8.120 \text{ or } -8.119$
Seven hours after the store opens, the rate that the customers remove bananas from the
table is decreasing by 8.120 $\frac{\text{pounds}}{\text{hr}^2}$.
(c)
$f(5) \approx 13.796 \frac{\text{pounds}}{\text{hr}}$ removed $g(5) \approx 11.532 \frac{\text{pounds}}{\text{hr}}$ added
The number of pounds on the table at $t = 5$ is decreasing since $f(5) > g(5)$.
or consider:
Amount of bananas at any time, $A(t) = 50 - \int_0^t f(x) dx + \int_3^t g(x) dx$
A'(t) = -f(t) + g(t)
$A'(5) = -f(5) + g(5) \approx -13.796 + 11.532 < 0$
Hence the amount of bananas on the table is decreasing at $t = 5$.
(d) Pounds of bananas on table at $t = 8$ is the pounds at opening – pounds removed + pounds added

 $50 - \int_0^8 f(t) dt + \int_3^8 g(t) dt \approx 23.34739574$ pounds or 23.347 pounds